Assimilation of information on positions of surface drifters in an operational system

Srdjan Dobricic⁽¹⁾, Jenny Nilsson⁽²⁾, Nadia Pinardi⁽²⁾, Pierre-Marie Poulain⁽³⁾ and Daniele Pettenuzzo⁽²⁾

(1) CMCC, Bologna, Italy

(2) INGV, Bologna, Italy

(3) OGS, Trieste, Italy

Outline

- Mediterranean Forecasting System (MFS)
- OceanVar Data assimilation scheme
- Trajectory model acting as an observational operator
- Experiemnts with surface drifters and Argo floats
- Future development

OceanVar data assimilation scheme

OceanVar minimizes a 3DVAR.A cost function, linearized around the background state:

$$J = \frac{1}{2} \delta \mathbf{x}^T \mathbf{B}^{-1} \delta \mathbf{x} + \frac{1}{2} [\mathbf{H}(\delta \mathbf{x}) - \mathbf{d})]^T \mathbf{R}^{-1} [\mathbf{H}(\delta \mathbf{x}) - \mathbf{d})]$$
$$\delta \mathbf{x} = \mathbf{x} - \mathbf{x}_b \qquad \mathbf{d} = [H(\mathbf{x}_b) - \mathbf{y}]$$

Preconditioning is done using a control vector v defined by:

$$\mathbf{v} = \mathbf{V}^+ \mathbf{\delta} \mathbf{x} \qquad \mathbf{B} = \mathbf{V} \mathbf{V}^T$$

V is modelled as a sequence of linear operators: \mathbf{V}_V - Vertical EOFs. \mathbf{V}_u

- $\mathbf{V}_{\!_{H}}\,$ Horizontal covariances.
- \mathbf{V}_{η} Barotropic model for eta

 $\mathbf{V} = \mathbf{V}_D \mathbf{V}_{uv} \mathbf{V}_\eta \mathbf{V}_H \mathbf{V}_V.$

 \mathbf{V}_{uv}^{-} Diagnose u and v.

 $\mathbf{V}_{\!D}^{}$ -Divergence damping filter.

3

Regional representation of V_v

- Seasonal climatological matrix for the vertical part of the operator, varying in 13 regions
- Composed of 20 EOF computed from model output standard deviations

Barotropic model simulates covariances between temperature/salinity and sea level

It finds stationary solution of free-surface equations forced by constant perturbations of salinity and temperature. It is a 4DVAR for the barotropic mode.

$$\frac{U^{n+1} - U^{n-1}}{\Delta t} - fV^n = -gH \frac{\partial \eta^*}{\partial x} - \int_{-H}^0 \left[\int_{-z}^0 \frac{\partial (\delta b)}{\partial x} dz' \right] dz + \gamma \nabla^2 U^{n-1}$$

$$\frac{V^{n+1} - V^{n-1}}{\Delta t} + fU^n = -gH \frac{\partial \eta^*}{\partial y} - \int_{-H}^0 \left[\int_{-z}^0 \frac{\partial (\delta b)}{\partial y} dz' \right] dz + \gamma \nabla^2 V^{n-1}$$

$$\frac{\eta^{n+1} - \eta^{n-1}}{\Delta t} + \left(\frac{\partial U^*}{\partial x} + \frac{\partial V^*}{\partial y} \right) = 0$$

 $\delta b = g(\delta \rho / \rho_0) \qquad \qquad \delta \rho = \alpha \delta T + \beta \delta S$

RMSE SLA misfits 1999 - 2009

Assimilation of float position observations

- **y** Observation of Argo position (r)
- $H(\mathbf{x})$ Non-linear Lagrangean model of the trajectory
 - X Eulerian model fileds of velocity

Floats in the Mediterranean during September-December 2009

Surface drifters

Argo floats

List of data assimilation experiments

Assimilated observations

Ехр	SLA	Tem	Sal	Drifter	Argo
CTRL	Х	Х	Х		
SURF	Х	Х	Х	Х	
SURF2	Х	Х	Х	Х	Х
ARGO	Х	Х	Х		Х

November 1

November 10

Sea surface height and velocity on December 22

CTRL

SURF

Dots – surface drifters Triangles – Argo floats during December 13-23

Dots – surface drifters Triangles – Argo floats during December 13-23

Zonal velocity at Creten Passage on December 22

RMS of residuals

Improved SLA forecast when surface drifter position is assimilated

Future development

- During MyOcean2 it is planned to include the drifter position assimilation in the MFS operational chain
- The assimilation of surface drifters may become very important in emergency situations