Multi-parameter/multivariate techniques and diagnostic models for the retrieval of the 3D ageostrophic currents at mesoscale from combined satellite and in situ measurements

Bruno Buongiorno Nardelli, CNR, Italy

Presented by

Marie-Hélène Rio, CLS, France

2009 MyOcean CALL for R&D proposals

MEsoSCale dynamical Analysis through combined model, satellite and in situ data

PI: **Bruno Buongiorno Nardelli**¹ Co-PI: Ananda Pascual² & Marie-Hélène Rio³

Participants: F.Bignami¹, S. Guinehut³, G. Larnicol³, S. Mulet³, S.Ruiz², J. Tintorè² External expert: Y. Drillet⁴

MESCLA project (2010-2012) is focused on the estimation and analysis of the vertical exchanges associated to MESOSCALE DYNAMICS and of their interannual variability, concentrating on a

Three **key factors** are needed to correctly describe **mesoscale processes** (i.e. temperature, salinity, velocity fields) :

Sufficiently high horizontal resolution

•Knowledge of their vertical structure

•Proper dynamical framework (at least quasi-geostrophic approximation)

Starting point of the study: The ARMOR3D/SURCOUF3D T/S/U/V fields produced at CLS

Global U/V → Surcouf3D - Method

Altimetry :

Field of absolute geostrophic surface currents - weekly - 1/3°

Armor3D : 3D T/S fields weekly - 1/3° - [0-1500]m

 $u(z = z_i) = u(z = 0) + \frac{g}{\rho f} \int_{z=0}^{z_i} \frac{\partial}{\partial y}$ $-\rho'(z)dz$ $\frac{\partial}{\partial r}\rho'(z)dz$ $v(z = z_i) = v(z = 0) - \frac{g}{z_i}$ ρf

Surcouf3D

3D geostrophic current fields weekly (1993-2008) 1/3° - 24 levels from 0 to1500m

Mulet et al, 2012

Which improvements within MESCLA?

•Improve existing observational 3D fields (ARMOR) by testing other multivariate extrapolation techniques, merging in situ and satellite data and improving the resolution

>the development of new methodologies to interpolate in situ sea surface salinity (SSS) at high resolution (preliminary tests also on ADT) \rightarrow CNR Buongiorno Nardelli B., 2012: A novel approach to the high resolution interpolation of in situ Sea Surface Salinity, submitted to J. Atmos. Ocean. Tech.

>the adaptation of the Myocean observation-based **ARMOR3D** (1/3°) processing chain to ingest **high resolution SST and SSS L4 products** (up to $1/10^{\circ}$ res.) \rightarrow CLS

≻the test of mEOF-r methodology for the retrieval of vertical profiles from surface data (Buongiorno Nardelli et al. 2006)→CNR

B.Buongiorno Nardelli et al., 2012: Towards high resolution mapping of 3D mesoscale dynamics from observations: preliminary comparison of retrieval techniques and models within MESCLA project, submitted to Oc. Sci. (special Coscil on Myocean Project)

Which improvements within MESCLA?

•High resolution observation based 3D fields used to retrieve the vertical component of the ageostrophic flow through the quasi-geostrophic Omega equation $\rightarrow IMEDEA$ Q-vector formulation of

High resolution 3D fields

Temperature Salinity Density

 $\nabla^2 (N^2 w) + f^2 \frac{\partial^2 w}{\partial z^2} = 2\nabla \cdot \vec{Q}$ \longrightarrow High resolution $\vec{Q} = \left[f\left(\frac{\partial V}{\partial x}\frac{\partial U}{\partial z} + \frac{\partial V}{\partial y}\frac{\partial V}{\partial z}\right), -f\left(\frac{\partial U}{\partial x}\frac{\partial U}{\partial z} + \frac{\partial U}{\partial v}\frac{\partial V}{\partial z}\right) \right]$ **3D velocity fields**

 \rightarrow Vertical velocity W $U, V \rightarrow$ Horizontal geostrophic velocities

the **OMEGA** equation

TEST PERFORMED ON LIMITED DATABASE/AREA

NOT NECESSARILY **GOING TO WORK**

Multi-parameter high resolution interpolation of surface data

→HR SSS needed by new 3D reconstruction methods
→new product potentially useful in combination with SMOS data

Hypothesis:

high correlation between sea surface temperature (SST) and sea surface salinity (SSS) variations can be expected (in the open ocean) at scales significantly smaller than the ones dominating atmospheric variability

Proposed technique:

optimal interpolation (Bretherton-like) algorithm that includes satellite (spatially highpass filtered) SST differences in the covariance estimation

$$\mathbf{x}_{analysis} = \mathbf{x}_{background} + \mathbf{C}(\mathbf{R} + \mathbf{C})^{-1}(\mathbf{y}_{obs} - \mathbf{x}_{background})$$
$$\mathbf{Q}(\Delta r, \Delta t, \Delta SST = \mathbf{e}^{\left(-\frac{\Delta t}{\tau}\right)^{2}} \mathbf{e}^{\left(-\frac{\Delta r}{L}\right)^{2}} \mathbf{e}^{\left(-\frac{\Delta SST}{H}\right)^{2}}$$

Covariance function parameters (i.e. spatial (L), temporal (T) and thermal (T) decorrelation scales and spatial filtering) **determined empirically minimizing errors vs independent surface observations**

Results

Simulated Test datasets

Red dots (input) 30 days window, centered on interpolation day→ MERCATOR data resampled on INSITU profiles location (space/time)

Blue dots (validation) (only for interpolation day) MERCATOR DATA

Results

Qualitative and quantitative results:

Simulated MESCLA high resolution SSS field and derived **SSS gradient** reproduce most of the smaller scale structures visible in the simulated observations (MERCATOR).

my Ocean

Development of a high resolution Absolute Dynamic Topography (ADT) L4 product

•Same technique as for SSS

•now need to work on tuning/validation vs independent observations (i.e. using a reduced number of sensors) and/or GDR data
→ not possible to do it within MESCLA

Increasing the resolution of 3D observation based **PSOCHUCTARMORSD** \rightarrow multiple linear regression T=T(z,SST, ADT); S=S (z,ADT) adapted to HR SST L4 (here Odyssea, 1/10°) adapted to HR SSS L4 (MESCLA, $1/10^{\circ}$) \rightarrow S=S(z,ADT,SSS) **MESCLA3D (1/10°)** \rightarrow multivariate EOF-reconstruction T=T(z,SST, SSS, ADT); S=S(Z SST SSS ADT) 39.0%

ARMOR3D Reynolds 1/3° surface 100 m Synthetic ARMOR3D **MESCLA SSS** surface 100 m

100 m

37.0"N

35.0°N

33.09

37.0°N 35.0°N

33.0%

43.0°N

surface

salinit

mEOF-r Odyssea + MESCLA SS

Increasing the resolution of 3D observation based products products ARMOR3D and to the MESCLA experimental products:

 \rightarrow stronger vertical exchanges are estimated as resolution is increased and more advanced extrapolation techniques are used

QG vertical velocity

MESCLA project showed that:

 Multi-parameter/multivariate techniques can be used to increase the horizontal resolution of sparse in situ (and perhaps altimeter) observations

•Multivariate techniques allow to retrieve 3D structure from surface data

•Quasi-geostrophic diagnostic equations can be used to describe mesoscale dynamics beyond geostrophic balance

•Not shown: A semi-geostrophic diagnostic model has now been implemented. Significant improvements of the vertical velocity estimates are obtained compared to the quasi-geostrophic approximation.

•TESTS PERFORMED ON LIMITED DATASETS

•TUNING/CALIBRATION/VALIDATION FOR OTHER AREAS NEEDED

•NOT G in the framework of GlobCurrent?

