

Comparing altimetry-derived geostrophic current anomalies with other observations

M. Cancet⁽¹⁾, E. Jeansou⁽¹⁾, F. Birol⁽²⁾, S. Labroue⁽³⁾, M. Le Hénaff⁽⁴⁾, R. Morrow⁽²⁾, N. Picot⁽⁵⁾, A. Guillot⁽⁵⁾

⁽¹⁾NOVELTIS, ⁽²⁾LEGOS/CTOH, ⁽³⁾CLS, ⁽⁴⁾RSMAS, ⁽⁵⁾CNES

- GlobCurrent User Consultation Meeting -

08/03/2012

7-9 March 2012 – IFREMER, Brest, France

- What are ocean surface currents ?
- How to observe currents especially in altimetry ?
- How to validate the altimeter currents ?
- Case study: the Florida Strait
- Recommendations for the GlobCurrent project

• Ocean surface currents

Direct observations: quantitative

- In situ measurements
- Satellite observations (SSH)
- Indirect observations: qualitative
 - Sea Surface Temperature / Salinity fronts
 - Ocean color mesoscale structures (filaments, eddies)

Models outputs

- Surface currents computation
- Structures positions in various parameters (SSH, SST, SSS,...)

• Diversity of (quasi)-direct observations

• Altimetry-derived geostrophic current anomalies

- ► SLA global maps → total current anomalies
- ► Alongtrack SLA → across-track current anomalies

- Recent progress in coastal altimetry: Improving 2D maps
 - ▶ Merging with tide gauges data along the coast → better coastal currents

► Using shorter correlation scales and high resolution altimeter data in the mapping processing → mesoscale structures (Dussurget et al, 2011)

- Recent progress in coastal altimetry: Improving alongtrack data
 - Coastal or regional specific corrections
 - Dedicated retracking methods
 - Specific editing strategies
 - High frequency data processing
 - Several projects: PISTACH (CNES), COASTALT (ESA), X-TRACK (CTOH), ...

Recent progress in coastal altimetry

Questions:

- → Realism of the retrieved SSH (and consequently current) data near the coasts / of the improved 2D-maps (structures smoothing) ?
- → Added-value of the coastal processing compared to classical SLA data ?
- → Impact of the various coastal-oriented processing and corrections ?

Recent progress in coastal altimetry

Questions:

- Realism of the retrieved SSH (and consequently current) data near the coasts / of the improved 2D-maps (structures smoothing) ?
- → Added-value of the coastal processing compared to classical SLA data ?
- → Impact of the various coastal-oriented processing and corrections ?

Qualitative and quantitative comparisons to independent data (SSH and currents)

08/03/2012

• Direct observations physical contents differ

Type of Data	Type of Instrument	Geostrophic	Ekman	Tide/HF
In situ	Currentmeter/ADCP/CTD	X	X	X
	HF radars	X	X	X
	Gliders	X		X
Satellite (EO)	Altimetry	X		X
	SAR	X	X	X

Homogenization post-processing of the data is required before comparing.

08/03/2012

 NOV-3900-SL-12005

 © NOVELTIS 2012-This document is the property of Noveltis, no part of it shall be reproduced or transmitted without the express prior written authorisation of Noveltis

Direct observations availabilities differ

Type of Data	Instrument	Repetitivity	Spatial cover
In situ	Currentmeter/ ADCP/CTD	Mooring: Long records (few minutes sample)	Mooring: Very local (1 point)
		Ship: A few days, ponctual	Ship: Local, a few km
	HF radars	Long records (1 hour)	Local, a few km
	Gliders	A few days, ponctual	Local, a few km
Satellite (EO)	Altimetry	10 days to 35 days	Global
	SAR	35 days	Global

Along-track comparisons require :

- \rightarrow Long time series of independent data
- \rightarrow Under (or near) the altimeter ground-track
- \rightarrow Areas with steady geostrophic structures

- Example: PISTACH level-3 products in the Florida Strait
 - PISTACH project:
 - Funded by the CNES
 - New processing methods and corrections dedicated to coastal applications
 - Up to now: Jason-2 IGDR products + about 80 extra fields
 - PISTACH level-3 products: high frequency SLA on reference ground-tracks
 - "Test zones" chosen after consulting the coastal altimetry community
 - The Florida Strait (2011)
 - The Agulhas Current (upcoming in 2012)

08/03/2012

- PISTACH data: 5Hz products (1.4km), 7km low-pass filtered 3 retrackings: MLE4, RED3, OCE3
- ► Jason-2 DUACS SLA: monomission 1Hz product
- Post-processing:
 - See presentation: Cancet et al., 5th Coastal Altimetry Workshop, 2011 <u>http://www.coastalt.eu/sandiegoworkshop11/</u>

- Looe Key ADCP mooring (23m depth)
- 14 months in common with Jason-2
 44 cycles

Directions - Mean current Looe Key - 60h filtered

- Data post-processing:
 - 60h low-pass filter (Inertial period in the area = 29h)
 - Interpolation at the altimeter measurement dates
 - Projection in the cross-track direction

08/03/2012

© NOVELTIS 2012-This document is the property of Noveltis, no part of it shall be reproduced or transmitted without the express prior written authorisation of Noveltis

On-going work but...

already shows

- The coherency of the signals: altimetry (PISTACH level 3 data), tide gauge and ADCP data
- Some limits of the comparison
 - Position of the ADCP mooring (bathymetry bend)
 - Distance between the altimeter track and the mooring (30 km)
 - Length of the time series (14 months 44 cycles)
- The synergy between various independent observations and models

Perspectives:

• Focusing on particular events in observations or model outputs

Perspectives:

Focusing on particular events in observations or model outputs

Perspectives:

Computing climatologies / statistics at long time scales

Take-home messages: recommendations for GlobCurrent

- Observing the coastal currents and mesoscale structures with altimetry data is improving
 - Coastal 2D-mapping of SLA and currents
 - Coastal altimetry data dedicated processing strategies

→ Real benefit for the users: more data close to the coasts, assimilation in the models, etc...

- Validating the coastal altimetry currents is necessary to
 - Quantify the realism of the retrieved SLA and currents, compared to classical products and other types of observations
 - Assess the influence of some parameters on the coastal altimeter data: tide correction, atmospheric forcing, troposphere corrections...
 - → Be confident in the data quality
- Comparing various kinds of surface current observations implies
 - Different physical contents \rightarrow homogenization of the data
 - Need for long time series of in situ data, near the altimeter ground-tracks
 - Steady or well-identified geostrophic structures
 - → Synergy between the observations