On the use of Lagrangian Coherent Structures in direct assimilation of ocean tracer images

<u>O. Titaud</u>*, J. Verron**, J.-M. Brankart** titaud@cerfacs.fr

CERFACS*, Toulouse, France LEGI**, Grenoble, France

GlobCurrent 2012 Ifremer, Brest, France, 7-9 March 2012

Objectives of the study

Phytoplankton bloom Malvinas currents December 6, 2006 (Courtesy: NASA)

- ► The main objective of this study is to show that we can exploit ocean tracer images in direct image assimilation schemes
- ► We realize a numerical experiment using a high resolution double-gyre idealized model of the North Atlantic Ocean (1/54°).
- We will focus on:
 - Surface velocity fields
 - Sea Surface Temperature (SST)
 - mixed layer phytoplankton (PHY)
- We construct an observation operator based on the computation of Lagrangian Coherent Structures
- We study the sensibility of a cost function associated with this operator wrt the amplitude of a surface velocity perturbation (state variable)

O. Titaud et al.

Observation Operators

Outline

Direct Image Assimilation

Test case

Coherent Lagrangian Structures Definition of Finite-Time Lyapunov Vectors

Observation operators based on LCS computation Observation operator based on FTLV

Impact study Methodology Results

Conclusions, future work, references

Direct Image Assimilation General concept

- > Ocean tracer images contain structured information that should be exploited
- ► S: space of pertinent information to be observed : structures
 - Frequency characteristics (e.g. multi-scale modelling of the images)
 - Pattern properties (contours, regions of interest ...)
- $\|\cdot\|_{\mathcal{S}}$: discrepancy measure between two elements of \mathcal{S}
- ▶ *H*_S: structures **observation operators** (model equivalent of obs structures)

$$J(X_0) = \frac{1}{2} \underbrace{\int_0^T \|\mathcal{H}[\mathbf{X}] - \mathbf{y}_{obs}\|_{\mathcal{O}}^2 dt}_{\text{classical term}} + \frac{1}{2} \underbrace{\int_0^T \|\mathcal{H}_{\mathcal{S}}[\mathbf{X}] - \mathbf{y}_{s}\|_{\mathcal{S}}^2 dt}_{\text{"image" term}} + \frac{1}{2} \|x_0 - x_b\|_{\mathcal{X}}^2$$

▶ $\mathbf{y} \in \mathcal{S}$: observed structures in images (sub-sampling of observations)

Titaud et al., 2010

Conclusion

Direct Image Assimilation

Test case

Coherent Lagrangian Structures Definition of Finite-Time Lyapunov Vectors

Observation operators based on LCS computation Observation operator based on FTLV

Impact study Methodology Results

Conclusions, future work, references

O. Titaud et al.

- High resolution (1/54°) idealized simulation of the North Atlantic Ocean (double gyre)
- ▶ NEMO-OPA/TOP2 (dynamics/tracers) and LOBSTER (bio-geochemical)
- Sea Surface Temperature (SST) and mixed layer phytoplankton (PHY)
- Region of study: $\Omega = [-74.62, -68.62] \times [22.36, 28.36] (6^{\circ} \times 6^{\circ})$
- Reference date : April 9

Sequence of meso-scale surface velocities (1/4°) obtained by sub-sampling and spatial filtering (Lanczos)

Test case

Coherent Lagrangian Structures Definition of Finite-Time Lyapunov Vectors

Observation operators based on LCS computation Observation operator based on FTLV

Impact study Methodology Results

Conclusions, future work, references

Coherent Lagrangian Structures (LCS)

The transport of a tracer in a fluid is closely related to emergent patterns called **Coherent Structures** (Ottino 1989, Wiggins 1992):

- Stationary flows: stable and unstable manifolds of hyperbolic trajectories
- Delimit regions of whirls, stretching or contraction

Stretching of a passive tracer in the vicinity of an hyperbolic point

In practice, LCS are determined by computing the Finite Time Lyapunov Exponents (FTLE)

(Haller and Yuan, 2000), (Haller, 2001a; 2001b; 2002; 2011), (Shadden et al., 2005)

▶ This tool is widely used in oceanography to study mixing processes

(d'Ovidio et al., 2004), (Lehahn et al., 2007), (Beron-Verra et al., 2010)

O. Titaud et al.

Finite-Time Lyapunov Vectors (FTLV)

$$(\star) \begin{cases} \frac{D\mathbf{x}(t)}{Dt} = \mathbf{u}(\mathbf{x}(t), t) \\ \mathbf{x}(t_0) = \mathbf{x}_0 \end{cases} \begin{cases} \frac{D\delta\mathbf{x}(t)}{Dt} = \nabla\mathbf{u}(\mathbf{x}(t), t) \cdot \delta\mathbf{x}(t) \\ \delta\mathbf{x}(t_0) = \delta_0, \quad \mathbf{x}(t_0) = \mathbf{x}_0 \end{cases}$$

Particle transport by the flow u(x, t) Evolution of a given perturbation δx

Finite-Time Lyapunov Vector

FTLV is defined as the direction of maximum stretching, i.e. the eigenvector $\varphi_{t_0}^{t_0+T}(\mathbf{x}_0)$ of the largest eigenvalue λ_{max} of the Cauchy-Green strain tensor:

$$\Delta = \left[\nabla \phi_{t_0}^{t_0+T}(\mathbf{x}_0) \right]^* \left[\nabla \phi_{t_0}^{t_0+T}(\mathbf{x}_0) \right], \quad \phi_{t_0}^{t_0+T} : \mathbf{x}_0 \mapsto \mathbf{x}(T), \quad \text{flow map of } (\star)$$

Backward FTLV (\approx stable manifold): time integration is inverted in (\star)

Finite-Time Lyapunov Exponent (separation rate) : $\frac{1}{|T|} \ln \sqrt{\lambda_{\max}(\Delta)}$

(Ott, 1993), (Shadden et al. ,2005; 2009), (Haller, 2011)

O. Titaud et al.

FTLV: variational point of view

- **FTLV** is a local notion: the eigenvector $\varphi_{t_0}^{t_0+T}$ is computed at a given point \mathbf{x}_0
- Seeding a domain with particles initially located on a grid leads to the computation of a discretized vector field

Backward FTLV orientation map with respect to the velocity field ${\boldsymbol{\mathsf{u}}}$

$$\Phi[\mathbf{u}] : \mathbf{x} \in \Omega
ightarrow arphi_{t_0}^{t_0+T}(\mathbf{x}) \in \mathbb{R}^2$$

Test case

Coherent Lagrangian Structures Definition of Finite-Time Lyapunov Vectors

Observation operators based on LCS computation Observation operator based on FTLV

Impact study Methodology Results

Conclusions, future work, references

O. Titaud et al.

Connection between FTLV and tracer fields

The orientation of the gradient of passive tracers converge to that of backward FTLV in freely decaying 2D turbulence flow

⁽Lapeyre, 2002)

This property has also been observed on real data

(d'Ovidio et al., 2009)

Observation Operator based on FTLV

Structure Space: functions with values in the Euclidean sphere S^2

$$\mathcal{S} = \{f: \Omega \to S^2\}$$

Observation Operator (vector field)

$$\mathcal{H}_{\mathcal{S}}(X) = \Phi(\mathbf{u}) \qquad \Phi(\mathbf{u}) : \mathbf{x} \in \Omega \mapsto \varphi_0^{-T}(\mathbf{x}) \in S^2$$

▶ Information extraction from the observed image *c* (vector field)

$$\mathsf{V} \ : \ \mathcal{I}_{\Omega} \to \mathcal{S} \qquad \mathsf{V}(c)(i,j) = \frac{\nabla c(i,j)}{\|\nabla c(i,j)\|} = \mathbf{y} \in \mathcal{S}^2$$

• Orientation of $\mathbf{v} = (u, v) \in S^2$: $\Theta(\mathbf{v}) = \operatorname{atan}(v) \in [-\pi/2, \pi/2]$

► Angular measure in S

$$\|f - g\|_{\mathcal{S}} = \sqrt{\frac{1}{n \times m} \sum_{i,j} \sin^2[\Theta(f(i,j)) - \Theta(g(i,j))]}$$

Corresponding image part of the cost function

$$J_{\mathcal{S}}(\mathbf{u}) = \|\Phi(\mathbf{u}) - V(c)\|_{\mathcal{S}}^2.$$

Test case

Coherent Lagrangian Structures Definition of Finite-Time Lyapunov Vectors

Observation operators based on LCS computation Observation operator based on FTLV

Impact study Methodology Results

Conclusions, future work, references

O. Titaud et al.

Methodology : Pre-requisite for data assimilation

Aim: study the behaviour of the cost function with respect to the amplitude λ of velocity perturbations on the form $\mathbf{u}_0 + \lambda \delta \mathbf{u}$, where $\delta \mathbf{u} \sim \mathcal{N}(\mathbf{0}, \mathbf{SS}^T)$

Sensitivity of the cost function wrt to a perturbation amplitude λ :

$$\widetilde{J}_{\mathcal{S}}(\lambda) = \|\mathcal{H}_{\mathcal{S}}[\mathbf{u}^{\lambda}] - \mathbf{y}\|_{\mathcal{S}}^{2}, \quad \lambda \in \Lambda.$$

• We have to check that the sensitivity function $\tilde{\mathcal{J}}_{S}$ admits a minimum at $\lambda = 0$ (no perturbation).

O. Titaud et al.

Methodology

Climatological covariance matrix for the velocity perturbation

(u^(l))^r_{l=1}: first r = 100 EOFs of the one year sequence of simulated surface velocity fields

$$\mathbf{u}_k = \overline{\mathbf{u}} + \sum_{l=1}^{m=209} \alpha_k^{(l)} \mathbf{u}^{(l)},$$

▶ $S = (u^{(1)}|u^{(2)}|\cdots|u^{(r)})$: reduced rank square root representation of the climatological covariance matrix

$$\mathsf{P} = rac{1}{m}\sum_{k=1}^{m+1}(\mathsf{u}_k-\overline{\mathsf{u}})(\mathsf{u}_k-\overline{\mathsf{u}})^*$$

 \blacktriangleright Gaussian perturbations with zero mean and covariance SS^{T}

$$\delta_{\mathbf{u}} \sim \mathcal{N}(\mathbf{0}, \mathbf{SS}^{\mathrm{T}}). \quad \delta_{\mathbf{u}} = \sum_{l=1}^{r} \mathbf{u}^{(l)} \delta x_{l} \quad \text{with} \quad \delta x_{l} \sim \mathcal{N}(\mathbf{0}, \mathbf{1})$$

We are interested in perturbations of amplitude λ applied at the reference date: ${\bf u}_0+\lambda\delta{\bf u}$

Test case

Coherent Lagrangian Structures Definition of Finite-Time Lyapunov Vectors

Observation operators based on LCS computation Observation operator based on FTLV

Impact study

Methodolog Results

Conclusions, future work, references

O. Titaud et al.

Results / discussion

Variation of the sensitivity functions computed wrt the amplitude λ of nine random perturbations

- Each of the sensitivity function admits a global minimum
- Minimum is generally reached around $\lambda = 0$ (no perturbations)
- Convex shape: good point for minimization algorithms
- Minimum value is not zero

O. Titaud et al.

Test case

Coherent Lagrangian Structures Definition of Finite-Time Lyapunov Vectors

Observation operators based on LCS computation Observation operator based on FTLV

Impact study Methodology Results

Conclusions, future work, references

O. Titaud et al.

Conclusions, future work and references

Conclusions

- ► High resolution ocean tracer images may be exploited by a direct image assimilation scheme in a mesoscale model
- FTLV fields contain information about the system dynamic that can be observed in the ocean tracer fields: this is a good candidate to construct observation operator for image assimilation
- A single ocean tracer image contains a time integrated information on the system dynamics

Future work

- Full data assimilation experiment
- Observation errors / real data

References

- L. Gaultier, J. Verron, J.-M. Brankart, O. Titaud, P. Brasseur, On the inversion of submesoscale tracer fields to estimate the surface ocean circulation, *Journal of Marine Systems*, in press
- ▶ O. Titaud, J.-M. Brankart, J. Verron, On the use of Finite-Time Lyapunov Exponents and Vectors for direct assimilation of tracer images into ocean models, *Tellus A*, Oct. 2011
- O. Titaud, A. Vidard, I. Souopgui, and F.-X. Le Dimet. Assimilation of image sequences in numerical models. Tellus A, 62(1):30-47, Janvier 2010

O. Titaud et al.