Inferring surface displacements from hourly SST fields: preliminary results

P. Le Borgne¹, A Marsouin¹, B. Levier², L. Marié³

¹ Météo-France, ² Mercator-Océan, ³ Ifremer

- Introduction
- Experiment description
- Method
- Results
- Conclusion

Can we relate the displacements observed by METEOSAT to the surface currents?

GlobCurrent meeting, Brest, 7-9 March 2012

Preliminary tests

Preliminary tests on one day have shown that:

- The optimal correlation method seems promissing
- With a time interval of 3 hours
- Better results are obtained with SST fields rather than with gradient fields

METEO

FRANCE

Experiment description

- Study area: 2W 7W 47N 50N
- Period: 30 May 2009 mean tide 27-28 September 2011 spring tide
- METEOSAT derived SST, 1h, 0.05 degree
- Ocean model IBI outputs: SST, surface current, 1h, ~2km
- Radar measurements: surface current, 15 min, ~2km

GlobCurrent meeting, Brest, 7-9 March 2012

Method: principles

SST field displacement calculated in two steps:

- Optimal correlation
 - Reference box in field 2
 NxN pixels, centered at (P,L)
 - Moving box in field 1 +/-5 line or pixel displacement
 - Optimal correlation between moving box and reference box
 => displacement (dP, dL)
- Calculation in real coordinates
 - Adjustment of a 2 degree polynom to the correlation over the 3x3 box centered at (dP,dL)
 - Polynom maximum => (dX,dY)

Method: processing steps

no filter, 2x2, 3x3

METEO

- Median filter on SST fields
- Optimal correlation
 NxN box
- Test on displaced SST
 rejection if mean(|SST_{disp} SST_{ref}|) > DT
- Calculation in real coordinates
- Smoothing velocity vectors (3x3 box)
- Displacements converted into velocity vectors

Tests on IBI SST and Meteosat SST (27 Sept 2011, 20h): no filter (or median 2) N=11 DT=0.3K

GlobCurrent meeting, Brest, 7-9 March 2012

Results

METEOSAT SST derived velocity vectors are compared to:

- IBI surface currents on the whole area
- Radar measurements on a limited western sub-area

Velocity vectors on 28 sept 2011 3h-6h

Velocity vectors on 28 sept 2011 11h-14h

Velocity module statistics METEOSAT / IBI

timäedvääs. seivet sin 301116838.5500.no					
 i e e	# cases	bias	sigma	IBI mean	
all area	31948	0.27	0.52	0.75	
Iroise	8657	0.05	0.42	0.81	🔶 OK
Manche cote	9612	0.22	0.49	0.91	← 22
Manche large	5863	0.27	0.45	0.83	
Ouest large	6850	0.47	0.53	0.63	↓ had
Sud Bretagne	3993	0.53	0.57	0.33	

METEOSAT derived velocity vectors compared to IBI currents Statistics on velocity module, values in m/s, 27 sep 14 h to 28 sep 14h, 2011

Similar results on 30 May 2009 but with lower values

GlobCurrent meeting, Brest, 7-9 March 2012

GlobCurrent meeting, Brest, 7-9 March 2012

611m0230025_msg_satuel_31 20110927 1200 me ya

6 oversant_radar_avgvsl_3h_20110828.nc 11 vz_00

GlobCurrent meeting, Brest, 7-9 March 2012 METEO FRANCE

Velocity module statistics METEOSAT / IBI / RADAR

The radar data cover 2 sub-areas, Iroise and Ouest large

	# cases	bias	sigma	mean ref					
Iroise									
vs IBI	2173	-0.10	0.48	0.84					
vs radar	2173	-0.04	0.46	0.78					
Ouest large									
vs IBI	1499	0.33	0.53	0.72					
vs radar	1499	0.30	0.55	0.75					

METEOSAT derived velocity vectors compared to IBI or radar currents Statistics on velocity module, values in m/s, 27 sep 14 h to 28 sep 14h, 2011 Statistics calculated on cases available in the 3 data sets

=> close results when comparing METEOSAT to IBI or radar

WILLIES STATE

- An attempt has been made to calculate velocity vectors from METEOSAT SST by optimal correlation
- Reasonable results are obtained in areas with rather strong currents
- Further studies would be needed to, at least, detect and eliminate high errors in areas of weak current