

Assimilation of HF radar currents in the Iroise Sea using EnOI Impact on eulerian and lagrangian currents GLOBCURRENT WORKSHOP, IFREMER

S. Raynaud and N. Thomas

Actimar, Brest, France

March 08, 2012

S. Raynaud and N. Thomas

Assimilation of currents in the Iroise Sea using EnOI

March 08, 2012 1 / 21

S. Raynaud and N. Thomas

Assimilation of currents in the Iroise Sea using EnOI

March 08, 2012 2 / 21

1 = 1 - 0 Q (P

・ロト ・回ト ・ヨト ・ヨト

S. Raynaud and N. Thomas

Assimilation of currents in the Iroise Sea using EnOI

March 08, 2012 3 / 21

1 = 1 - 1 - C

・ロン ・回 と ・ ヨ と ・ ヨ と

CONTEXT

MARS M2 tide

Container release

• Goal: Progress toward assimilation HF radar currents in the Iroise Sea.

- Iroise Sea: Coastal region, macro-tidal forcing, strong inhomogeneities.
- Applications: Oil and object drifts, dispersion studies, navigation.

• Special questions:

Actimar

- Can we improve lagrangian currents?
- How about assimilating a single radar?

S. Raynaud and N. Thomas

Assimilation of currents in the Iroise Sea using EnOI

March 08, 2012 4 / 21

ヨト・モート

Actimar

HF RADARS IN THE IROISE SEA

Emission

Reception

ヘロン 人間 とくほ とくほど

S. Raynaud and N. Thomas

Assimilation of currents in the Iroise Sea using EnOI

March 08, 2012 5 / 21

1 = 1 - 1 - C

Actimar

HF RADARS IN THE IROISE SEA

- Operated by Actimar for the SHOM since 2006.
- WERA 12.4 MHz.
- Reception: 16 antennas, BeamForming.
- Currents every 20 mn
- Gridded product: 2 km.

イロン イロン イヨン イヨン

S. Raynaud and N. Thomas

Assimilation of currents in the Iroise Sea using EnOI

March 08, 2012 6 / 21

1 = 1 - 1 - C

ヘロン 人間 とくほ とくほど

ENKF AND ENOI

Ensemble Kalman Optimal Interpolation

$$\Psi^{a} = \Psi^{f} + \alpha \mathbf{A}' \mathbf{A}'^{T} \mathbf{H}^{T} (\alpha \mathbf{H} \mathbf{A}' \mathbf{A}'^{T} + \Upsilon \Upsilon^{T})^{-1} (\mathbf{d} - \mathbf{H} \Psi^{f})$$

 \Rightarrow We choose EnOI for testing purpose, in passive assimilation mode (no restart).

S. Raynaud and N. Thomas

Assimilation of currents in the Iroise Sea using EnOI

<ロ> <同> < 同> < 目> < 目> < 目 > のQ()

MODEL

Source Preliminary tests with archived runs from PREVIMER (IFREMER, France).

Model MARS3D, rank 2 (800m resolution).

Performances In terms of currents: slightly too strong, especially near Ushant and west of Sein island.

Testing period August 2009.

5.6 km

PREVIMER ranks

イロト イポト イヨト イヨト

Ensemble for generating errors is built with en 14-hour undersampling of one month \rightarrow ensemble of 50 members.

Undersampling a large period gives better results.

S. Raynaud and N. Thomas

Assimilation of currents in the Iroise Sea using EnOI

MODEL ERRORS

CONSISTENCY

Ensemble variance must be close to model errors for both radars. Scaling with the rectification factor $\Omega \left[\Psi^{a} = \Psi^{t} + \alpha A' A'^{T} H^{T} (\alpha H A' A'^{T} + \Upsilon \Upsilon^{T})^{-1} (d - H \Psi^{t})\right]$.

 \Rightarrow For both radars with use: $\alpha^{\frac{1}{2}} = 0.6$.

S. Raynaud and N. Thomas

Assimilation of currents in the Iroise Sea using EnOI

March 08, 2012 10 / 21

Interpolation errors are weak except around islands.

S. Raynaud and N. Thomas

Assimilation of currents in the Iroise Sea using EnOI

LOCALIZATION

Strong inhomogeneity + error assumptions.

 \Rightarrow Localization to prevent unrealistic remote corrections (for the best or for the worst!).

 \rightarrow Correct a single model point with data within an appropriate radius.

Representer of U

Radius of selection

Assimilation of currents in the Iroise Sea using EnOI

PROJECTION OPERATOR *H*

 $\Psi^{a} = \Psi^{f} + \alpha \mathbf{A}' \mathbf{A}'^{T} \mathbf{H}^{T} (\alpha \mathbf{H} \mathbf{A}' \mathbf{A}'^{T} + \Upsilon \Upsilon^{T})^{-1} (\mathbf{d} - \mathbf{H} \Psi^{f})$

In three steps:

Actimar

- Add the Stokes drift.
- Bilinear interpolation into the radar grid.
- Projection of components onto the radial axis of the radar.

Stokes drift

Approximation with two second order polynoms of the 10-meter wind.

• • = • • =

Assimilation of currents in the Iroise Sea using EnOI

2 Assimilation filter setup

Results

S. Raynaud and N. Thomas

Assimilation of currents in the Iroise Sea using EnOI

EULERIAN CURRENTS

EXAMPLE

Local analysis with Garchine + Brezellec radars.

Gain: u=104.4% v=176.6%

Actimar

2009-08-05 17:00

EnOI.small.garbre.loc.nr50em6er10.2009880517.png

Local: min=18 max=35 rel=0.5 amp80=3.8

S. Raynaud and N. Thomas

Assimilation of currents in the Iroise Sea using EnOI

March 08, 2012 15 / 21

EULERIAN CURRENTS

PERFORMANCES [1/4]

Temporal statistical performances for local and global analyzes of 1 or 2 radars. Gain over forecast [%]: $100 \left(\frac{RMSE(torecast)}{RMSE(analysis)} - 1\right) (\rightsquigarrow < 0$ means no gain).

S. Raynaud and N. Thomas

Assimilation of currents in the Iroise Sea using EnOI

March 08, 2012 16 / 21

EULERIAN CURRENTS

PERFORMANCES [2/4]

Temporal statistical performances for local and global analyzes of 1 or 2 radars. Gain over forecast [%]: $100 \left(\frac{RMSE(torecast)}{RMSE(analysis)} - 1\right) (\rightsquigarrow < 0$ means no gain).

S. Raynaud and N. Thomas

Assimilation of currents in the Iroise Sea using EnOI

March 08, 2012 16 / 21

EULERIAN CURRENTS

PERFORMANCES [3/4]

Temporal statistical performances for local and global analyzes of 1 or 2 radars. Gain over forecast [%]: $100 \left(\frac{RMSE(torecast)}{RMSE(analysis)} - 1\right) (\rightsquigarrow < 0$ means no gain).

Assimilation a single radar: efficiency depends the direction of currents

S. Raynaud and N. Thomas

Assimilation of currents in the Iroise Sea using EnOI

March 08, 2012 16 / 21

EULERIAN CURRENTS

PERFORMANCES [4/4]

Temporal statistical performances for local and global analyzes of 1 or 2 radars. Gain over forecast [%]: $100 \left(\frac{RMSE(torecast)}{RMSE(analysis)} - 1\right) (\rightsquigarrow < 0$ means no gain).

Assimilation a single radar: efficiency depends the direction of currents

S. Raynaud and N. Thomas

Assimilation of currents in the Iroise Sea using EnOI

LAGRANGIAN POINT OF VIEW

- Virtual drifters using hourly currents and an integration step of 1mn.
- Radar currents slightly filled using shapiro2D+shapiro1D.

- \rightarrow Assimilation generally improves lagrangian simulations.
- \rightarrow Gain of local analyses compared to global analyses is not that clear.
- S. Raynaud and N. Thomas

Assimilation of currents in the Iroise Sea using EnOI

Conclusions

Introduction

Assimilation filter setup

3 Results

S. Raynaud and N. Thomas

Assimilation of currents in the Iroise Sea using EnOI

March 08, 2012 18 / 21

CONCLUSIONS AND PERSPECTIVES

EnOI assimilation

- Two WERA radars in the Iroise Sea.
- Ensemble based on large undersampling of MARS3D.
- Localization improves eulerian currents.
- Single radar: improvement depends on direction of currents.
- Strong effect from the lagrangian point of view.

Ongoing work

- Forecast efficiency.
- EnKF in active mode with smoother and IAU.
- Playing with initial conditions, drag coefficient, atmospheric forcing...
- Radar errors as an ensemble.
- Validation with surface drifters (and ADCP).
- Mediterranean Sea (microtidal).

S. Raynaud and N. Thomas

Assimilation of currents in the Iroise Sea using EnOI

March 08, 2012 19 / 21

(日) (周) (日) (日) (日)

CONCLUSIONS AND PERSPECTIVES

EnOl assimilation

- Two WERA radars in the Iroise Sea.
- Ensemble based on large undersampling of MARS3D.
- Localization improves eulerian currents.
- Single radar: improvement depends on direction of currents.
- Strong effect from the lagrangian point of view.

Ongoing work

- Forecast efficiency.
- EnKF in active mode with smoother and IAU.
- Playing with initial conditions, drag coefficient, atmospheric forcing...
- Radar errors as an ensemble.
- Validation with surface drifters (and ADCP).
- Mediterranean Sea (microtidal).

(日) (周) (日) (日) (日)

GLOBAL CURRENTS?

FOR COASTAL OPERATIONAL OCEANOGRAPHY

Dispersion study

SAR currents

Actimar

High spatial resolution.

Low temporal resolution.

Applications

Validation: Mesoscale processes or upwellings.

Assimilation: Low representativity, especially in tidal region.

Parameter optimization: Potential application of assimilation.

S. Raynaud and N. Thomas

(日) (周) (日) (日) (日)

Thank you

S. Raynaud and N. Thomas

Assimilation of currents in the Iroise Sea using EnOI

March 08, 2012 21 / 21